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Remarks

I want to thank most warmly the organizers and committee for
creating such a vital and spirited conference.

I originally intended to give this talk in beamer but was
prevented from completing the preparation at the last moment.
The superb blackboards at EPFL meant that the talk I gave
differed in emphasis from what would have been in the beamer
presentation. I have incorporated as much as I reasonably can
of the commentary into the files here.



1. Introduction

I Category theory came into being to systematize algebraic
topology, but one of the simplest (nontrival) functors is
differentiation — even for maps f ,g between Euclidean
spaces, the simplest way to express the Chain Rule is in
terms of the tangent functor: T (g ◦ f ) = T (g) ◦ T (f ) where
T (f )(X ,Y ) = (f (X ), D(f )(X )(Y )) .

I The tangent functor for manifolds specializes to the Lie
functor for Lie groups and Lie algebras, and to the Lie
functor for Lie groupoids and Lie algebroids.

I Groups can be defined by diagrams which express the
basic algebraic axioms. Requiring these diagrams to hold
in the category of smooth manifolds yields the definition of
Lie groups (and likewise with topological groups, etc).
Poisson Lie groups cannot be defined by using the Poisson
category in this way.



2. Poisson Lie groups

A Lie group G with a Poisson structure is a Poisson Lie group

I if the multiplication G ×G→ G is a Poisson map;
I equivalently, if π(gh) = T (Rh)(π(g)) + T (Lg)(π(h)) for all

g,h ∈ G ;
I equivalently, if G→ g ∧ g , the translation to the identity of

the Poisson tensor, is an adjoint– cocycle;
I equivalently, if . . .

The notion of Poisson Lie group is ‘not categorical’:

I The inversion is anti–Poisson;
I Right and left translations are not Poisson,

and not anti–Poisson;
I The inclusion of the identity is not a Poisson map.



3. T ∗G

I Consider a Lie group G with a Poisson structure π .
I The Lie group structure gives rise to the groupoid

T ∗G⇒ g∗ .
I The Poisson structure gives rise to the Lie algebroid

T ∗G→ G .

Theorem 1: If (G, π) is a Poisson
Lie group then the structure maps
of the cotangent groupoid
T ∗G⇒ g∗ are Lie algebroid
morphisms. J

T ∗G //

�� ��

G

�� ��
g∗ // {·}

Source, target, inversion and
inclusion of identity are Lie
algebroid morphisms.



4. T ∗G , p2

T ∗G //

�� ��

G

�� ��
g∗ // {·}

This characterization of PLGs is ‘categorical’
in the sense that all the groupoid structure
maps are Lie algebroid morphisms (no
antimorphisms).

I That the source is a Lie algebroid morphism is equivalent
to the bracket of left-invariant 1-forms being a left-invariant
1-form, [

←−
θ1 ,
←−
θ2] =

←−−−−−
[θ1, θ2]∗ ;

I That the target is a Lie algebroid morphism is equivalent to
the bracket of right-invariant 1-forms being a right-invariant
1-form, [

−→
θ1 ,
−→
θ2] =

−−−−−→
[θ1, θ2]∗ ;

I That the identity inclusion g∗ → T ∗G is a Lie algebroid
morphism is equivalent to g∗ being coisotropic in T ∗G .



5. Inversion T ∗G→ T ∗G is a morphism

Multiplication in T ∗G is defined by

〈ΦΨ, XY 〉 = 〈Φ,X 〉+ 〈Ψ,Y 〉. (1)

Here Φ ∈ T ∗
g G, Ψ ∈ T ∗

h G and we want ΦΨ ∈ T ∗
ghG . Any

element of TghG can be written as a product XY with
X ∈ TgG , Y ∈ ThG .

So 〈Φ−1, X−1〉 = −〈Φ,X 〉 . For Φ a 1-form,

〈Φ−1(g),X 〉 = −〈Φ(g−1), X−1〉 = −〈Φ(g−1), T (i)(X )〉
where i : G→ G is the group inversion. So Φ−1 = −i∗Φ .

T ∗G
i∗ //

π#

��

T ∗G

−π#

��
TG

T (i) // TG

Since i : G→ G is antiPoisson, the diagram
commutes. Shifting the minus sign, we get
that inversion of 1-forms preserves the
anchor. It further follows that inversion
preserves the bracket.

Return to frame 16.



6. T ∗G , p4

A converse to Theorem 1 would not be useful: for example, it
would require a Lie algebra structure on g∗ in advance. Instead:

Theorem 2: Let G be a Lie group with a Poisson structure π .
Then (G, π) is a PLG if and only if the Poisson anchor
π# : T ∗G→ TG is a Lie groupoid morphism. J

Here TG is the usual tangent group with multiplication
XY = T (Lg)(Y ) + T (Rh)(X ) for X ∈ TgG, Y ∈ ThG .

Idea of proof: That π# is a groupoid morphism is equivalent to
each of the groupoid structure maps commuting with the
anchor. For these maps between T ∗G and g∗ , commuting with
the anchors implies commuting with the brackets.



7. Poisson groupoids

Similar results hold for Poisson groupoids, and hence for
symplectic groupoids.

Definition: A Lie groupoid G⇒ P with a Poisson structure π
on G is a Poisson groupoid if the graph of multiplication is a
coisotropic submanifold of G ×G ×G . (Weinstein, 1988) J

A symplectic groupoid is a Poisson groupoid for which the
Poisson structure is non-degenerate.

As with PLGs, the inversion in a Poisson groupoid is
antiPoisson and left and right translations are in general neither
Poisson nor antiPoisson. In addition, the source and target
maps have opposite polarities.



8. Poisson groupoids, p2

Theorem 3: A Lie groupoid G⇒ P with a Poisson structure π
on G is a Poisson groupoid if and only if the Poisson anchor
π# : T ∗G→ TG is a morphism of Lie groupoids. J

TG⇒ TP is the tangent prolongation Lie groupoid obtained by
applying the tangent functor to all the structure maps of G⇒ P .

T ∗G⇒ A∗G is the cotangent prolongation Lie groupoid with
base the dual of the Lie algebroid AG . For G a Lie group,
T ∗G⇒ g∗ is the action groupoid from the coadjoint action of G
on g∗ .

To require T ∗G→ TG to be a groupoid morphism requires a
base map A∗G→ TP . Denote it a∗ . It will be the anchor of the
Lie algebroid structure on A∗G .



9. Poisson anchor

T ∗G //

�� ��

π#

##G
G

G G

�� ��

��?
?

?

TG //

�� ��

G

�� ��

A∗G //
a∗

##G
G

G P

��@
@

@

TP // P

π# is a morphism of Lie groupoids
over a∗ and is a morphism of Lie
algebroids over G .

The basic properties of Poisson
groupoids and their Lie
bialgebroids can be obtained from
the diagram.

Rather than do this, we will prove
that for any Lie groupoid H ⇒ M ,
the cotangent groupoid
T ∗H ⇒ A∗H is a Poisson (and
hence symplectic) groupoid with
respect to the canonical symplectic
structure dν , where ν is the
canonical 1-form on T ∗H . This is
the first real challenge that this
approach faces.



10. T ∗H ⇒ A∗H

Must show that the Poisson anchor is a groupoid morphism
T ∗(T ∗H)→ T (T ∗H) over a map A∗(T ∗H)→ T (A∗H) .

Proposition: For any manifold H the canonical map
T ∗(T ∗H)→ T (T ∗H) is the composition

T ∗(T ∗H)
R→ T ∗(TH)

Θ−1
→ T (T ∗H).

(Mackenzie and Xu, ’94) J

For E any vector bundle, RE : T ∗E∗ → T ∗E is the Legendre
type map given locally by (v , ϕ, ω) 7→ (ϕ, v ,−ω) .

For H any manifold, ΘH is the Tulczyjew map
T (T ∗H)→ T ∗(TH) which can be thought of as interchanging
the inner coordinates. (See also Frame 14. )

I’ll consider R and Θ individually.



11. R : T ∗E∗ → T ∗E

For any vector bundle E → M the map R is a morphism of
double vector bundles :

T ∗E∗ //

��

R
%%KKK

KKK
E∗

��

DD
DD

D
DD

DD
D

T ∗E //

��

E∗

��

E //

KKKKKKK

KKKKKKK M
DD

DD
D

DD
DD

D

E // M

It is an antisymplectomorphism for the canonical structures on
the cotangents.



12. R : T ∗E∗ → T ∗E , p2

For E = TH where H ⇒ M is a Lie groupoid, we need to show
that R is a morphism of groupoids:

T ∗T ∗H //

��

R
&&MMMMMMM

ssggggggggggggggg

ssggggggggggggggg T ∗H

��

HHH
HHH

HHH
HHH

A∗(T ∗H)
R

''NNNNNNN T ∗TH //

��

tthhhhhhhhhhhhhhh

tthhhhhhhhhhhhhhh T ∗H

��

A∗(TH) TH //

MMMMMMM

MMMMMMM H
HHHHHHH

HHHHHHH

TH // H

R will then be a morphism of three structures. The map R is
antiPoisson.

I’ll omit the proof of this and instead sketch the proof that Θ is a
groupoid morphism.



13. Θ: T (T ∗H)→ T ∗(TH)

Recall the canonical diffeomorphism J : T 2H → T 2H (for any
manifold H ) which interchanges the order in which derivatives
are taken.

It maps the tangent bundle T 2H = T (TH)→ TH of TH to the
prolongation bundle obtained by applying the tangent functor to
TH → H .

T 2H //

pTH

��

T 2H

T (pH )

��
TH // TH

Θ can be thought of as the dual of J . Note:

The domain of J is the tangent bundle of TH and its dual is the
cotangent bundle T ∗(TH)→ TH .

The target of J is the prolongation of TH → H and I denote its
dual by T •(TH)→ TH .



14. Θ: T (T ∗H)→ T ∗(TH), p2

The target of J is the prolongation of TH → H and its dual is
denoted by T •(TH)→ TH .

The duality between TH and T ∗H is defined by the pairing
T ∗H ×H TH → R . Apply the tangent functor to this and we get
a pairing T (T ∗H)×TH T (TH)→ R which is still
non-degenerate. So T •(TH) ∼= T (T ∗H) . Making this
identification the dual of J is

T (T ∗H)→ T ∗(TH)

and this is Θ . It is a morphism of double vector bundles

T (T ∗H) //

��

Θ
''OOOO T ∗H

��

III
II

III
II

T ∗(TH) //

��

T ∗H

��
TH //

QQQQQQQ

QQQQQQQ H
KKK

KKK
KKK

KKK

TH // H
Return to frame 10.



15. Θ: T (T ∗H)→ T ∗(TH), p3

Now suppose that H ⇒ M is a Lie groupoid. We will show that
Θ is a morphism of groupoids :

T (T ∗H) //

��

Θ

&&NNNNNN

sshhhhhhhhhhhhhhh

sshhhhhhhhhhhhhhh T ∗H

��

GGGGGG

GGGGGG

T (A∗H)
ϑ

&&NNNNNN
T ∗(TH) //

��

sshhhhhhhhhhhhhhhh

sshhhhhhhhhhhhhhhh T ∗H

��

A∗(TH) TH //

OOOOOOOOO

OOOOOOOOO H
HHHHHHH

HHHHHHH

TH // H



16. Θ: T (T ∗H)→ T ∗(TH), p4
To show that Θ is a morphism of groupoids, it is enough to
show that J is a morphism of groupoids and that the
identification of T •(TH) with T (T ∗H) is a morphism of
groupoids.

For the latter, observe that the formula (1) for the multiplication
in the cotangent groupoid shows that the pairing is a groupoid
morphism.

That J is a morphism follows from its
naturality :
The source of T 2H ⇒ T 2M is T 2(α) , where α
is the source of H .
By naturality, T 2(α) ◦ JH = JM ◦ T 2(α) .
Likewise with the target and the multiplication,
inverse, and identity inclusion.

T 2H
JH //

�� ��

T 2H

�� ��
T 2M

JM // T 2M



17. And so . . . ?

This completes the (sketch) proof that T ∗H ⇒ A∗H , for any Lie
groupoid H ⇒ M , is a symplectic groupoid. Why prove it this
way, when Coste, Dazord, Weinstein proved it in 1987 ?

My answer is that this proof extends to more general situations.
The proof for T ∗H ⇒ A∗H depends fundamentally on the
relationship between the two VB -groupoids (groupoid objects
in the category of vector bundles) :

TH //

�� ��

H

�� ��
TM // M

T ∗H //

�� ��

H

�� ��
A∗H // M

Structures of this type arise from double Lie groupoids . . .



18. Double Lie groupoids

S ////

�� ��

V

�� ��
H //// M

S is a double Lie groupoid. Picture the
elements of S as squares, with
horizontal edges from H and vertical
edges from V ; the corners are from M .

AV S

��

//// AV

��
H //// M

A∗V S

��

//// A∗C

��
H //// M

AV S is obtained by applying the Lie
functor to the vertical groupoid
structures. A∗V S is its dual, in the
sense of Pradines, and A∗C is a Lie
algebroid dual which emerges from
the structure of S .

AHS //

�� ��

V

�� ��
AH // M

A∗HS //

�� ��

V

�� ��
A∗C // M

This time we apply the Lie functor to the
horizontal groupoid structures in S .



19. Final result

Consider the duals obtained on the previous slide.

A∗V S

��

//// A∗C

��
H //// M

A∗HS //

�� ��

V

�� ��
A∗C // M

Since A∗V S and A∗HS are Lie algebroid duals, they have
Poisson structures.

Theorem: The groupoids A∗V S ⇒ A∗C and A∗HS ⇒ A∗C are
Poisson groupoids, and are dual as Poisson groupoids. J

Poisson groupoids are dual if the Lie algebroid of each is
isomorphic to the dual Lie algebroid of the other. (Various sign
conventions exist.)

Theorem: With its canonical symplectic structure, T ∗S is a
symplectic double groupoid and provides a global integration of
these dual Poisson groupoids. J



20. Concluding remarks

These results are (I believe) interesting in themselves but I also
want to emphasize the value of thinking categorically – or
diagrammatically – by which they were obtained.

Do these results have any connection with the work on higher
category methods in TQFT and allied fields ?

It would be interesting if this is so, but my suspicion is that there
is not a significant relation.

There are substantial differences between the Lie theory for
multiple groupoids and current higher category methods in
topology:

I The multiple groupoids studied here are strict; the methods
would not readily apply to weak structures.

I Inverses are crucial to a good Lie theory — the Lie theory
of semigroups with unit (a category with a single object) is
a very pale shadow of the Lie theory of groups.



21. Concluding remarks, p2

When one first meets ordinary Lie groupoids, the two most
basic examples are the fundamental groupoid of a manifold and
the frame groupoids of structured vector bundles. Thus
ordinary Lie groupoids are significant both for topology and for
differential geometry.

Nonetheless, this twofold relevance seems to break down at
the double level.

My own view is that the importance of the multiple Lie theory of
groupoids concerns Poisson geometry and theoretical
mechanics specifically and higher-order structures in
differential geometry proper.
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