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1. Introduction

Double vector bundles go back to the 1950s (Dombrowski) and were used in
the 1960s and 1970s in some accounts of connection theory (Dieudonne,
Besse) and theoretical mechanics (Tulczyjew). The first systematic account
was given by Pradines (1977).

They are essentially distinct from 2-vector bundles. I’ll say something about
this at the end, but until then everything in this talk is for finite-dimensional
smooth manifolds and all algebraic structures are strict.

The first example is TE for E → M a vector bundle. TE is a bundle over E
in the usual way and is also a vector bundle over TM by applying the tangent
functor to all the structure of E → M . Thus the projection TE → TM is T (q)
where q : E → M is the bundle projection for E . Regard the addition in E as
a map E ×M E → E . Apply T and we get TE ×TM TE → TE and this
defines the addition in TE → TM . And so on . . .

In what follows, it is often necessary to ‘apply the tangent functor’ and so I
always write T (f ) for a map f , rather than df , and so on.



2. Double vector bundles

In TE the two additions satisfy an interchange law. Suppose given four
elements, di ∈ TE , i = 1, . . . , 4,

di
//

��

Xi

��
ei // m

of TE
T (q) //

pE

��

TM

pM

��
E

q // M

Then
(d1 + d2) +

TM
(d3 + d4) = (d1 +

TM
d3) + (d2 +

TM
d4).

Here + is the standard addition of tangent vectors and +
TM

is the addition in
TE → TM (denoted ++ by Besse). For the sums to be defined, various
conditions on the Xi , ej are needed.

The interchange law is the main defining condition for a double vector bundle.



3. Definition

A double vector bundle is a manifold D with two
vector bundle structures, over bases A and B ,
each of which is a vector bundle on a manifold M ,
such that the structure maps of D → A (the
bundle projection qA , the addition +

A
, the scalar

multiplication, the zero section) are morphisms of
vector bundles with respect to the other structure.

D //

��

B

��
A // M

“A double vector bundle is a vector bundle object in the category of vector
bundles.”

The condition that the addition +
A

is a morphism with respect to the other
structure is the interchange law

(d1 +
A

d2) +
B

(d3 +
A

d4) = (d1 +
B

d3) +
A

(d2 +
B

d4).



4. ‘Decomposed’ example

There will be more examples shortly. For now, a very simple example.

Given any three vector bundles A , B , C on the same base M , write
D = A×M B ×M C for the fibre-product manifold.

The inverse image over A→ M of the Whitney sum bundle B ⊕ C → M has
underlying manifold D .

Likewise, the inverse image over B → M of the Whitney sum bundle
A⊕ C → M has underlying manifold D .

So D has vector bundle structures over bases A and B and is a double
vector bundle.

Every double vector bundle is isomorphic to a decomposed double vector
bundle (not usually in a natural way).

Note: The Whitney sum A⊕ B ⊕ C is a vector bundle over M . This is not
part of the double vector bundle structure !



5. Duality

D //

��

B

��
A // M

D∗A //

��

?

��
A // M

D → A is a vector bundle so can be dualized as usual. There is no a priori
reason to expect that the result will form a double vector bundle. However . . .

Write C for the set of all elements of D which
project to zero in both structures.

These are closed under addition, and the two
additions coincide, due to the interchange law.
So C is a vector bundle over M .
C is the core of D .

d //

��

0B
m

��
0A

m
// m



6. Short exact sequences

The bundle projection D → B is a morphism of vector bundles over A→ M .
Write Khor for its kernel. Every element of Khor is the sum (uniquely) of a core
element and a zero element in D → A .

k //

��

0B
m

��
a // m

equals c //

��

0B
m

��
0A

m
// m

plus (over B ) e0a
//

��

0B
m

��
a // m

where c = k −B
e0a .

The addition in Khor corresponds to adding the core elements. So Khor is the
inverse image bundle q!

AC and we have a short exact sequence

0 // q!
AC // D // q!

AB // 0

(Shriek denotes inverse image.)



7. Short exact sequences, p2

The dual of the short exact sequence

0 // q!
AC // D // q!

AB // 0

is
0 // q!

AB∗ // D∗A // q!
AC∗ // 0

This suggests that there may be a double vector bundle

D∗A //

��

C∗

��
A // M

D∗B //

��

B

��
C∗ // M

and this is so. Likewise there is a double vector bundle D∗B .



8. Example

For D = TE the core is E . Consider: the kernel of TE → E is the vectors
along the zero section. And the kernel of TE → TM is the vertical vectors.
Vertical vectors are tangent to the fibres and at zero can be identified with
points of the fibres.

TE //

��

TM

��
E // M

T ∗E //

��

E∗

��
E // M

What is the dual of TE over TM ? Apply the tangent functor to E ×M E∗ → R
and we get TE ×TM T (E∗)→ R , also a non-degenerate pairing. So

TE //

��

TM

��
E // M

T (E∗) //

��

TM

��
E∗ // M



9. The duals are dual

Theorem: D∗A → C∗ and D∗B → C∗ are themselves dual.

‘PROOF’: Take Φ ∈ D∗A and Ψ ∈ D∗B projecting to same κ ∈ C∗ . Say
Φ 7→ a ∈ A and Ψ 7→ b ∈ B . Take any d ∈ D which projects to a and b . The
pairing is

〈Φ,Ψ〉C∗ = 〈Φ, d〉A − 〈Ψ, d〉B.

The subtraction ensures that the RHS is well-defined.

These are duals as double vector bundles. Now write X for dualization in the
vertical structure and Y for dualization in the horizontal.

D //

��

B

��
A // M

DX //

��

C∗

��
A // M

DXY //

��

C∗

��
B // M

DXYX //

��

A

��
B // M

The final double vector bundle is the ‘flip’ of the first. There is no canonical
sense in which the two can be identified.



10. The duality group

Repeating from the previous slide:

D //

��

B

��
A // M

DX //

��

C∗

��
A // M

DXY //

��

C∗

��
B // M

DXYX //

��

A

��
B // M

Now interchange X and Y :

D //

��

B

��
A // M

DY //

��

B

��
C∗ // M

DYX //

��

A

��
C∗ // M

DYXY //

��

A

��
B // M

The results are canonically isomorphic. Briefly, XYX = YXY .

Together with X 2 = Y 2 = I this shows that X ,Y generate the symmetric
group of order 6. Write DF2 for this group.

In effect DF2 is the symmetric group of {A,B,C∗} .



11. Triple case

Before going on to the triple case, it’s reasonable to address the question:
Why go further ?

Lie algebroids =⇒ Poisson structures =⇒ Cotangent bundles

We saw above that the cotangent of a vector bundle E → M is a double
vector bundle.

T ∗E //

��

E∗

��
E // M

T ∗D

��

//

$$HHH
D∗B

��

""EEE

D∗A //

��

C∗

��
D //

$$JJJ
JJ B

##GGG
G

A // M

In a similar way the cotangent of a double vector bundle is a triple vector
bundle. Any study of bracket structures on a double vector bundle will lead to
working with triples.

And there is always curiosity. As it turns out the answer in the triple case is
surprising.



12. Triple vector bundles

From here on I am describing joint work with Alfonso Gracia-Saz (LMP, 2009).

E1,2,3
X //

��

$$HHH
E2,3

��

!!DD
D

E1,3 //

��

E3

��

E1,2 //

$$III
I E2

""DDD
D

E1
// M

E
∗E2,3
1,2,3

//

��

��?
??

E2,3

��

��?
??

?

E∗E3
3,12

//

��

E3

��

E∗E2
2,31

//

��?
??

E2

��?
??

?

E∗123
// M

On the RHS is EX . Imagine calculating EXYXZ this way . . . it gets
complicated very quickly.

E123 is the ultracore. It is the set of all elements e ∈ E1,2,3 which project to
zeros in E1,2 , E2,3 and E3,1 . It is a vector bundle on base M . For brevity
write E0 = E∗123 .



13. Duality for triple vector bundles

E1,2,3
X //

��

$$HHH
E2,3

��

!!DD
D

E1,3 //

��

E3

��

E1,2 //

$$III
I E2

""DDD
D

E1
// M

E
∗E2,3
1,2,3

//

��

��?
??

E2,3

��

��?
??

?

E∗E3
3,12

//

��

E3

��

E∗E2
2,31

//

��?
???

E2

��?
??

?

E0
// M

X leaves E2 and E3 fixed and interchanges E1 with E0 .

E1 E2 E3 E0

X E0 E2 E3 E1

Y E1 E0 E3 E2

Z E1 E2 E0 E3

So the group of dualization functors acts as S4 on E1 , E2 , E3 and E0 .



14. Duality for triple vector bundles

In effect we have a short exact sequence

1→ K → DF3 → S4 → 1.

Determine K .

S4 is generated by σ1 = (01) , σ2 = (02) , σ3 = (03) . These are subject to

σ2
i = 1, (σiσj )

3 = 1, (σiσjσiσk )2 = 1,

i, j, k distinct.

We know that X 2 = 1,. . . and that (XY )3 = 1, . . .

Is it also true that (XYXZ )2 = 1 ?

To settle this, look at the ‘automorphisms’ of E .



15. Statomorphisms

Consider first the double vector bundle case. A statomorphism ϕ : D → D is
an automorphism which induces the identity on A , B and the core C .
Consider the decomposed case, D = A×M B ×M C . Then ϕ has the form

ϕ(a, b, c) = (a, b, c + ξ(a, b))

where ξ : A×M B → C is a bilinear map. We usually regard it as A⊗B → C .

In the triple case we have the cores E12 , E13 , E23 of the lower faces and the
ultracore E123 . So an element of a decomposed triple vector bundle is
(e1, e2, e3, e12, e13, e23, e123) . Now a statomorphism is
ϕ(e1, e2, e3, e12, e13, e23, e123) = (e1, e2, e3,

e12 + γ(e1, e2), e13 + β(e1, e3), e23 + α(e2, e3),

e123 + ν(e3, e12) + λ(e1, e23) + µ(e2, e13) + ρ(e1, e2, e3))

where

γ : E1 ⊗ E2 → E12, β : E1 ⊗ E3 → E13, α : E2 ⊗ E3 → E23,

λ : E1 ⊗ E23 → E123, µ : E2 ⊗ E13 → E123, ν : E3 ⊗ E12 → E123,

and ρ : E1 ⊗ E2 ⊗ E3 → E123 are linear maps.



16. Statomorphisms, p2

Now a dualization operator will act on statomorphisms. In the double case
applying X to ξ : A⊗ B → C sends it to −ξ : A⊗ C∗ → B∗ . We use the
same letter for A⊗ B → C and the rearrangements A⊗ C∗ → B∗ , . . .

The triple case :

γ β α λ µ ν ρ

X −µ −ν α −λ −γ −β γν + βµ− ρ
Y −λ β −ν −γ −µ −α αλ+ γν − ρ
Z γ −λ −µ −β −α −ν αλ+ βµ− ρ

We can now calculate the effect of a word such as (XYXZ )2 on the
statomorphisms and we get

γ β α λ µ ν ρ

X −µ −ν α −λ −γ −β γν + βµ− ρ
YX µ α −ν γ λ −β ρ− βµ− γν

XYX −γ α β −µ −λ ν −ρ
XYXZ −γ µ λ −α −β −ν ρ− αλ− βµ

(XYXZ )2 γ −β −α −λ −µ ν ρ



17. Statomorphisms, p3

So (XYXZ )2 does not act as the identity on the statomorphisms. This
certainly suggests that (XYXZ )2 is a nonidentity element of the kernel.
However, we have not yet made clear what the group DF3 is and when an
element is the identity.

Duality of ordinary vector bundles is a contravariant functor. For double
vector bundles, X and Y are contravariant functors (on suitable categories)
and XY , for example, is a covariant functor.

Triple case: Consider a word W in X ,Y ,Z . If this is in the kernel, then W is
a covariant (auto)functor on the category of triple vector bundles,

Theorem: The action of W on the group of statomorphisms is the identity if
and only if W is naturally isomorphic to the identity functor through
statomorphisms.

So (XYXZ )2 6= 1. Equivalently, (XYX )Z 6= Z (XYX ) . So ‘flipping’ in the
XY -plane does not commute with dualizing in the Z direction.



18. Sketch proof

Let Cati , i = 1, 2, be two categories, and let F ,G : Cat1 → Cat2 be two
functors. A natural transformation W : F → G is a collection of morphisms
W (E) : F (E)→ G(E) in Cat2 for every object E in Cat1 such that, given
any morphism ϕ : E → E ′ in Cat1 , we have

W (E ′) ◦ F (ϕ) = G(ϕ) ◦W (E).

If, in addition, W (E) is an isomorphism in Cat2 for every object E in Cat1 ,
the natural transformation W is called a natural isomorphism.

Suppose W acts as the identity. Take a triple vector bundle E . We want to
define a statomorphism W (E) : E → EW . Take any decomposition
P : E → E . Applying W to P we get PW : EW → E

W
= EW = E . Define

W (E) := (PW )−1 ◦ P.

Suppose that P is replaced by some other s ◦ P where s is a
statomorphism. Then W (s) = s . So W (E) is well-defined. The natural
isomorphism conditions are easy to verify. So is the converse.



19. Structure of the group

It is an extension of the symmetric group S4 by the Klein four–group.

1→ K4 → DF3 → S4 → 1.

As an S4 –module, K4 is isomorphic to the normal subgroup of S4

{1, (12)(30), (23)(10), (13)(20)}

with action by conjugation. The group DF3 has order 96.

The extension is not split.

size ord α β γ λ µ ν

(XYXZ )2 3 2 −α −β γ −λ −µ ν

(XYZ )2 3 4 −λ β ν α µ −γ
(ZYX )2 3 4 λ β −ν −α µ γ

XZXY 6 4 λ −µ ν −α −β −γ
XY 32 3 β −ν λ µ γ −α
Z 12 2 −µ −λ γ −β −α −ν

XYZYXZY 12 4 µ −λ −γ β −α ν

XYZ 12 8 −γ −µ −λ ν −β α

ZYX 12 8 ν −µ −α γ −β λ



20. Remarks

I What do the (non-identity) elements in the kernel represent? They have
order 2 so are somewhat like classical duality operations. However they
affect only the “internal structure”. They are in some sense “invisible.”

I The main consequence of the determination of DF3 may be expressed
as: after the identity (XY )3 = 1 (and its conjugates) arising from the
duality of the duals of a double vector bundle, there is only one further
identity, namely (XYXZ )4 = 1.

I In the four–fold case we have

1→ K5 → DF4 → S5 → 1.

where K5 = (Z2)5. The order is 3, 840.
I This work arose from studying bracket structures on double vector

bundles.
I The groups DFn are not invariants of any one n -fold vector bundle, but

rather of the whole class of n -fold vector bundles, As far as we know,
these groups have not arisen before.
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